Optical Resolution and Circular Dichroism Spectrum of a Complex containing Nickel(IV)

By PAUL J. HEANEY, A. GRAHAM LAPPIN, ROBERT D. PEACOCK,* and BRIAN STEWART (Department of Chemistry, The University, Glasgow G12 8QQ)

Summary The first optical resolution and circular dichroism spectrum of a complex containing nickel(IV) is reported.

VERY few compounds of Ni^{IV} have been reported¹ and, despite having the low-spin d⁶ electron configuration in common with Co^{III}, Pd^{IV}, and Pt^{IV}, no complex of Ni^{IV} has been resolved into optical isomers. The sexidentate ligand **3**,14-dimethyl-4,7,10,13-tetra-azahexadeca-3,13-diene-2,15dione dioxime, H₂L, (1) readily forms² octahedral complexes with Co^{III}, Ni^{II}, and Ni^{IV}. Models suggest that only one of the possible geometric isomers is likely to be formed and this has been confirmed³ for the Co^{III} complex by crystal structure analysis.

Chromatography of NiL²⁺ on SP Sephadex cation exchange resin confirms that, in this case also, only one geometric isomer is formed and we have succeeded in resolving this into optical isomers by elution with potassium (+)-antimonyl tartrate solution $(0.025 \text{ mol } l^{-1})$. The c.d. spectrum of the first-eluted isomer of NiL²⁺ (2) (as the perchlorate salt) is shown in the Figure. The complex is optically stable, as expected for a low-spin d⁶ ion, and slowly decomposed (over several weeks at 5 °C in aqueous solution) without racemisation. The Ni¹¹ complex, on the

other hand, is labile; no optical activity is detected in a freshly reduced solution prepared from the resolved NiL²⁺.

The c.d. spectrum shows a clear exciton couplet in the region of the first ligand transition. This is caused by the interaction of the two long-axis (parallel to the C-C bond) polarised transitions of the di-imine groups of the ligand and allows us to assign to the first-eluted isomer the absolute configuration shown in (2). The two absorption bands in the visible region at 20.0 and $23.25 \times 10^3 \, {\rm cm^{-1}}$ have been assigned¹ as ligand-to-metal charge-transfer transitions. This is supported by the value of their dissymmetry factors, $\Delta\epsilon/\epsilon$ (ca. 3×10^{-3}), which are similar to those for the well-established metal-to-ligand charge-transfer transitions of the di-imine complexes of Fe^{II 4} and Ru^{II.5}

The complex is a good oxidising agent ($E^0 \ 0.94 \ V$), oxidising many organic substrates (e.g. ascorbic acid, cysteine) smoothly and rapidly,6 and has potential as an asymmetric oxidant. Preliminary studies show that L-(+)-cysteine is oxidised at least 50% more rapidly by the first-eluted isomer of NiL²⁺ than by its enantiomer.

- 1973, 208, 1364.
 - ⁴ S. F. Mason, Inorg. Chim. Acta, Rev., 1968, 2, 89.
 - ⁵ B. Bosnich, *Inorg. Chem.*, 1968, 7, 178. ⁶ A. G. Lappin, to be submitted.

FIGURE. Absorption (upper curve) and circular dichroism (lower curve) spectrum of a 7×10^{-6} mol l^{-1} aqueous solution of NiL(ClO₄)₂.

We thank the S.R.C. for grants to construct a c.d. spectrometer and to purchase a stopped-flow apparatus and the Trustees of the Ramsay Memorial Fellowships Trust for a Fellowship (to B. S.).

(Received, 22nd April 1980; Com. 415.)